第一百八十一章 纳维-斯托克斯方程 (第2/3页)
的解存在时,其动能有其上下界。
上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学届,都在寻找n-s方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。
但对于n-s方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难!
所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,n-s方程的弱解存在,可以在平均值上满足n-s方程,但也仅此而已,无法在每一点上满足。
此外夏裔数学家陶大师也曾写过一篇《finite time blowup for an averaged three-dimensional navier-stokes equation》的论文,将n-s方程全局正则性问题的超临界状态屏障形式化,让n-s方程的研究又有了新的推进,但距离解决“n-s方程的存在性与光滑性的问题”还很遥远。
为此,“三维空间中的n-s方程组光滑解的存在性问题”,被米国克雷数学研究所设定为七个千禧年大奖难题之一。
可以说,谁能将这个问题研究清楚,并找出和证明这个通解,那将会催化出无数新的数学工具、数学方法、物理理论,引领着数学届和物理届实现迈步式的大发展!
到了那时,基本上物理的诺贝尔奖、马塞尔·格罗斯曼奖,数学的菲尔兹奖、克拉福德奖、沃尔夫数学奖等等大奖都可以拿到手软了,更别说由之带来巨大的社会经济效益、对人类文明的推动作用!
正是深知这个纳维-斯托克斯方程的难度与意义,当秦克看到系统给予的奖励居然是《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解(前篇)》时,脑海里只有一个念头——拼了老命也得把这个奖励拿到手!
虽然不知道这个“探究与详解”,是否就能证明“三维空间中的n-s方程组光滑解的存在性问题”并求出方程组的通解,但凭着秦
(本章未完,请点击下一页继续阅读)