返回

第二百一十七章 桥的题

首页
关灯
护眼
字:
上一章 回目录 下一页 进书架
最新网址:wap.xbiqugu.net
    第二百一十七章 桥的题 (第1/3页)

    第二百一十七章桥的题

    张方平看了看身侧那位师爷,那师爷也是一副匪夷所思的神情,便又转回头来:“你先说说看。”

    苏油说道:“这类题型,我们管它叫剩余理论。简单易懂的解法如下:先列出除以三余二的数:二,五,八,十一……”

    “再列出除以五余三的数:三,八,十三,十八……”

    “这两列数中,首先出现的公共数——八。”

    “三与五的最小公倍数是十五,两个条件合并成一个,就是十五的整数倍,再加上八。”

    “列出这一串数是:八,二十三,三十八……”

    “再列出除以七余二的数二,九,十六,二十三,三十……“

    “这就得出符合题目条件的最小公共数——二十三。”

    “当然这是傻解,此题其实还有另有一种解法,有个歌诀说明:三人同行七十稀,五树梅花廿一枝,七字团圆月正半,除百零五便得知。”

    “第一句,三人同行七十稀,意思是说把该数除以三,所得余数用七十相乘。”

    “第二句,五树梅花廿一枝,是把该数除以五,所得余数用二十一乘。”

    “第三句,七子团圆月正半,是把该数除以七,所得余数用十五乘。”

    “第四句,除百零五便得知,则把上述三积加起来减去一百零五的倍数,所得差即所求之数。”

    “如果用土地庙的算式列式的话……”

    说完从书包里翻出本子和铅笔,刷刷刷写了一个算式:“喏,就是这样了。”

    那师爷将本子取过,见上边写着:2×70+3×21+2×15=233,233-105×2=23。

    师爷居然能看懂这个神奇的算式,拱手小心问道:“敢问公子,七十,二十一,十五,这几个数何来?为何分以二,三,二乘之?之后因何要减去一百零五?”

    苏油笑道:“七十除以三余一,可被五,七整除;所以七十的两倍,能够除以三余二,也被五,七整除,就满足了第一个余数条件,而不用考虑后两个余数;

    “同理,二十一除以五余一,同时可被三,七整除;所以二十一的三倍能够除以五余三,同时还能也被三,七整除;这就满足了第二个余数条件,而不用考虑第一,第三个余数;”

    “十五除以七余一,同时可被三,五整除,因而十五的两倍,能除以七余二,同时可被三,五整除;这就满足了第三个余数条件,而无需考虑第一,第二个余数条件。”

    “前三句诗分别说明这种情况,再将它们加到一起,这就既满足了该题前面整除部分,又满足了后面三个

    (本章未完,请点击下一页继续阅读)
最新网址:wap.xbiqugu.net
上一章 回目录 下一页 存书签